Setting a Common Performance Standard for Two Candidate Groups across Different Medical Licensing Examination Forms: A Comparison of Methods

Andrea Gotzmann, Medical Council of Canada
André De Champlain, Medical Council of Canada
Marguerite Roy, Medical Council of Canada
Carlos Brailovsky, College of Family Physicians of Canada
Sydney Smee, Medical Council of Canada
Ingrid de Vries, Medical Council of Canada

Correspondent to:

Andrea Gotzmann
Medical Council of Canada
2283 St. Laurent Blvd. Suite 100
Ottawa, ON, Canada K1G 5A2
(613) 521-6012 ext 2536
(613) 521-8059 FAX
agotzmann@mcc.ca
Abstract

Two assessment organizations in Canada, running two separate clinical skills examinations combined components of each examination to provide family medicine candidates with one clinical skills examination that leads to licensure and certification credentials. Concurrently, the Medical Council of Canada (MCC) had to ensure that the licensure decision for other specialty candidates was equitable to the licensure decision for family medicine candidates. This new testing model created the challenge of how to make comparable pass-fail classification decisions for both candidate cohorts. To answer this question, 1000 bootstrap replications using data from multiple administrations of both examinations were conducted to compare two standard setting approaches (modified borderline group and Hofstee) across two test forms and two candidate groups (family medicine and other specialty). Pass rates, decision consistency, and decision accuracy were calculated across all replications. The study results showed that the pass rates, decision consistency, and decision accuracy values were consistent across both standard setting procedures, with some differences found for the other specialty group. Additionally, the results indicated that implementing the new testing model did not adversely affect the two candidate cohorts and comparable classification decisions could be made for the licensure decision. The results contributed significantly to the decision to implement the new testing model.

Keywords: standard setting; scaling; high-stakes testing; performance assessment
Setting a Common Performance Standard for Two Candidate Groups across Different Medical Licensing Examination Forms: A Comparison of Methods

The reliability and validity of professional licensure and certification examination decisions are important to ensure the protection of the public. In medicine, physicians must pass a series of high-stakes examinations given at different points in their medical training. In Canada, physicians must pass both of the Medical Council of Canada’s (MCC) Qualifying Examinations Part I and Part II to receive their Licentiate of the Medical Council of Canada (LMCC). In addition, they must achieve certification from either the College of Family Physicians of Canada (CFPC) for family medicine or the Royal College of Physicians and Surgeons of Canada (RCPSC) for other specialties.

Prior to 2013, family medicine physicians in Canada had to pass separate licensure and certification performance assessments. Specifically, they needed to pass the Medical Council of Canada’s Qualifying Examination (MCCQE Part II) and the CFPC certifying examination, both of which had written and clinical components. Candidates in any other specialty needed to pass the MCCQE Part II as one part of several requirements to receive the LMCC and subsequently completed the certifying examinations of the RCPSC.

The MCCQE Part II is an objective structured clinical Skills examination (OSCE) that consists of multiple case-based patient encounters or stations. The CFPC certifying examination consisted of a performance component, the simulated office orals (SOOs), and a written component comprised of short answer management problems (SAMPs). After many years of discussions, MCC and CFPC reached an agreement to harmonize the clinical assessment components of their respective examinations to improve both, to minimize the burden of two examinations for family medicine candidates and to seek efficiencies through collaboration.
The agreement was announced in spring 2011 with implementation to begin spring 2013. Starting spring 2013, family medicine candidates completed a single examination to meet the requirements for the MCCQE Part II and the clinical skills component of the CFPC Clinical Skills Examination (CFPC CSE; see Figure 1). To pilot a new model with a sufficiently large and appropriate pool of participants for meaningful statistical analyses would have been an overwhelmingly expensive and impossibly time-consuming endeavor. However, to implement a new model without consideration for its impact on scores and pass-fail decisions would have been irresponsible. The challenge was to design and then evaluate the impact of a new model without a pilot, a common issue with performance assessments. The classification decision for all candidates is vitally important and psychometric evidence to inform the decision to implement a new model is essential.

Examination Formats

Prior to 2013. The MCCQE Part II consisted of 12 OSCE stations with seven *10-minute* stations and five *couplet* stations. The *10-minute* stations consist of a 10 minute patient encounter portrayed by a standardized patient. A physician examiner observed and scored the candidate’s performance based on a predefined checklist and up to seven behavioural rating items. In addition, the examiner rated each candidate on a six-point global scale for the checklist and the rating scale components of the station. The *couplet* stations consist of a 5 minute patient encounter portrayed by a standardized patient followed by a post-encounter probe of 5 minutes that consists of several short answer questions that are completed by the candidate in a 5 minute time block. As with the 10 minute encounters, a physician examiner scored each candidate’s performance according to a checklist and one to three rating scale items, plus rated each candidate using a six-point global scale. Following the examination, a team of physicians scored
the short answer questions for all candidates in one separate scoring session. Like the patient-based station examiners, these examiners also rated each written component of a couplet station with a six-point global scale.

The CFPC certification examination consisted of SAMPs and five SOO stations. The SAMPs (written examination) measure a candidate’s problem-solving skills and knowledge in the context of a clinical situation (CFPC, 2012a). The SOO stations duplicate the actual setting in which a family physician conducts a practice (CFPC, 2012b). The five SOO stations are 15 minutes in length with an additional 10 minutes for scoring. For the SOO stations, the physician examiner presented the scenario as the patient and then scored the candidate following the encounter. The areas to be scored are described in a rubric for each SOO station with three rating categories: Superior Certificant, Certificant, and Non-certificant.

Spring 2013 to present. The two examinations were “harmonized” for family medicine candidates. Two test forms for different candidate groups (other specialty and family medicine) are used to make a joint licensing decision and a clinical component decision for certification. Other specialty candidates take the MCCQE Part II test form for the licensing decision. Family medicine candidates take the CFPC CSE test form for both the licensing and certification decision, that is, there are two cut-scores from which family medicine candidate performance is evaluated.

This new format affected both candidate groups as the other specialty candidates take eight 10-minute and four couplet stations for the MCCQE Part II while family medicine candidates take eight 10-minute and four SOO stations for the new CFPC CSE. As shown in Figure 2, other specialty candidates are evaluated on eight 10-minute stations and four couplet stations. Family medicine candidates are evaluated on the same eight 10-minute stations and
four SOO stations. Other specialty candidates are judged to have met the licensing performance standard for the MCCQE Part II based on their total score. Family medicine candidates are judged to have met the licensing performance standard for the MCCQE Part II based on their scaled total score from the CFPC CSE. In addition, the family medicine candidates’ scaled total scores are used to determine if they meet the pass standard for the clinical component of the CFPC certification examination. The focus of this paper is on the licensing decision and not the evaluation of the pass standard for the clinical component of the CFPC certification examination.

Scaling

The new testing model created two candidate groups presented with different sets of stations that require a licensure decision to be made across the two test forms. Candidates’ pass/fail status is based on their total score for twelve stations (i.e., either eight 10-minute and four couplet stations for MCCQE Part II or eight 10-minute and four SOO stations for CFPC CSE). Ensuring a fair decision, regardless of test form is the challenge. If the complete set of stations for the MCCQE Part II are not as difficult as the complete set of stations for the CFPC CSE then some candidates might pass or fail due only to the difficulty of the test form and family medicine candidates would be disadvantaged. To address this issue, statistical scaling of the scores across the two different test forms is needed so that the scores are comparable and fair decisions can be made.

Scaling aligns or transforms scores from two different test forms onto a common scale to create comparable scores (Holland & Dorans, 2006; Kolen, 2006; Linn, 1993; Mislevy, 1992). Scaling can be used to align different test forms and different populations of candidates (Holland & Dorans, 2006) by taking into account the difficulty of the test forms and ability level of the candidate groups. To implement scaling one can either a) randomly assign candidates to test
forms to ensure equal distribution of ability across test forms and subsequently adjust for any differences in test form difficulty, which was not possible in this context, or b) present common items (or stations) to both candidate groups to estimate and subsequently compensate for ability differences as assessed on the common component. Because both candidate groups are given the same eight 10-minute stations the scaling can be conducted in this new testing model. In this case, total scores for family medicine candidates are statistically adjusted to the distribution for other specialty candidates using information on the scores from the common stations. Given the available sample sizes across 2009 and 2010 (~300 to ~2000) and scoring methods used in the existing examinations, linear scaling methods were deemed to be most appropriate. The Levine Observed score scaling procedure (Kolen & Brennan, 2004) is a common linear scaling method and was selected for the current study. This method estimates the relationship between the observed scores on the two test forms for the candidate groups and linearly transforms the total scores.

Standard Setting Procedures

There are many methods of determining a performance standard or cut-score (Cizek, 2007; 2012). The assumptions of each standard setting procedure are the criteria for determining the appropriate context for its use. Detailed descriptions of the array of procedures available have been described by De Champlain (2004) and Downing and Tekian, and Yudkowsky (2006). Both sets of authors indicate there is no “gold standard” procedure and that each examination context needs to be evaluated to ensure best practices are applied, especially for high-stakes examinations. Several researchers have described standard setting procedures for OSCEs (Boulet, De Champlain, & McKinley 2003; Boulet, Murray, Kras, & Woodhouse 2008; McKinley, Boulet, & Hambleton, 2005). However, research to date has not provided a
methodology to evaluate classification decisions when a testing model is undergoing change or to assess whether the change could have a potential negative impact on scores and/or classification decisions.

For the purpose of this study, two different standard setting procedures that could be applied to data previously collected (i.e., MCCQE Part II and CFPC CSE) were considered. The methods had to be appropriate for a performance assessment, specifically an OSCE, and be applicable after scaling of family medicine candidate scores. The two standard setting methods were the modified borderline group procedure, as used by the MCCQE Part II (Dauphinee, Blackmore, Smee, Rothman & Reznick, 1997) until fall of 2012, and the Hofstee (1983) procedure. Detailed descriptions of these two methods are discussed in the methods section.

Briefly, a borderline group method (Zieky & Livingston, 1977) is candidate centered and uses expert judgments of both the content of the examination and the population of candidates to set the standard. Candidate performance is placed into three categories: mastery, nonmastery, and borderline. The average or median score of the borderline group becomes the cut-score. The Hofstee (1983) method is a compromise between a norm-referenced and a criterion-referenced approach to standard setting. A standard setting panel of experts: answers four questions:

(1) What is the highest percent correct cut-score that would be acceptable, even if every candidate attains that score?

(2) What is the lowest percent correct cut-score that would be acceptable, even if no candidate attains that score?

(3) What is the maximum acceptable failure rate?
(4) What is the minimum acceptable failure rate? These four questions are used to draw a line that intersects the cumulative distribution of scores that in turn determines the cut-score at the total score level.

Purpose

This study evaluated and compared scaling for family medicine candidates and two standard setting procedures. The goal was to identify one common and fair performance licensing standard for candidate cohorts taking two different test forms (MCCQE Part II and CFPC CSE). Modified borderline group and Hofstee standard setting procedures were evaluated across two examination administrations (spring and fall) for MCCQE Part II and CFPC CSE test forms. The study’s focus was evaluating the common performance standard for the licensure decision (MCCQE Part II) rather than the certification decision. A full pilot of the new testing model was not feasible, so a simulation technique called bootstrapping was used to evaluate the standard setting outcomes for the two new test forms. Bootstrapping provides an estimate to evaluate a new testing model based on existing data, thereby informing implementation decisions.

Methods

Identifying a methodology that estimates the potential impact of different standard setting procedures and testing conditions (e.g., spring and fall administrations) in our context was important. One method commonly used in evaluating conditions without adversely effecting candidates is a Monte Carlo simulation design, where the data is simulated based on known population parameters and conditions. The complexity of the data collected for both the MCCQE Part II and the CFPC CSE made this method impractical and risked a data simulation that would not be well aligned with the new testing model. Therefore, bootstrapping
methodology was chosen because source data from past examinations could be used to better simulate conditions that were important to the new testing model.

Bootstrapping is a method for assigning measures of accuracy to sample estimates. In implementing a bootstrap procedure, samples of source data are selected, statistical analyses applied and then averaged across the repeated samples (Efron, 1979; Efron & Tibshirani, 1993). The method provides statistical estimates for a large number of samples and can also provide measurement outcomes important to the research questions being investigated. The sampling occurs with replacement, where all candidate responses have equal probability of being sampled for each bootstrap sample. Typically 1000 replications of the sample are conducted, as this closely mimics sampling for population statistical parameters. One thousand replications were conducted for this study.

Sample

Three sources of data were sampled and used to create the bootstrap replications. The first source of data was the spring and fall results of the 2009 MCCQE Part II for the other specialty candidates. This data was comprised of station scores; four couplet stations and seven 10-minute stations (spring; n = 784) and two couplet stations and six 10-minute stations (fall; n = 1914). The second source of data was the spring and fall results of the 2009 MCCQE Part II for the family medicine candidates. This data consisted of station scores; seven 10-minute stations (spring; n = 213) and six 10-minute stations (fall; n = 671). The third source of data was the spring and fall CFPC SOO station scores for the family medicine candidates, matched to the MCCQE Part II data sets. That is, the candidates’ station scores from the MCCQE Part II were matched to their station scores on the CFPC clinical component of the certifying examination,
where the CFPC data was matched from the spring and fall 2009 and 2010 administrations depending on when the candidate completed their CFPC examination.

Procedures

Data simulation. Using a bootstrap technique, 1000 samples were created by sampling with replacement. Each of the 1000 samples was created in two steps: (1) the first bootstrap was to create the number of stations for the new examination format (e.g., eight 10-minute and four couplet stations for other specialty), and (2) the second bootstrap was to create the approximate number of candidates typically found in the spring and fall administrations.

Scaling. The family medicine candidate total scores were scaled onto the metric of the total scores for the other specialty candidates based on the eight common 10-minute stations and applying the Levine Observed Score method (Kolen & Brennan, 2004). Descriptive statistics on the replications for the bootstrap and bootstrap statistics for total scores are provided in Table 1. The family medicine total scores, scaled with the Levine Observed Score method, bootstrap statistics are shown in Table 1.

Standard setting procedures. Two standard setting procedures were applied to each of the 1000 data sets using the other specialty candidates’ responses. That is, the other specialty candidate responses were used to calculate all cut-scores, where cut-scores were calculated for each replication and applied to all candidates (other specialty and family medicine after scaling). For each of the 1000 replications we recalculated the cut-score and associated outcome measures.

The first standard setting procedure was a modified borderline group method. This method uses average scores from a borderline group to set a cut-score (Dauphinee et al., 1997; Cizek & Bunch, 2007; Cizek, 2012). For the MCCQE Part II, the borderline candidates were
identified by physicians’ global rating scores of 3 or 4 on a six-point scale by component within station. The weighted average of the component cut-scores within station was the cut-score for that particular station. The average of the twelve station cut-scores was the total OSCE cut-score with the addition of the standard error of measurement of the total score for all candidates.

The cut-score was then applied to the other specialty total scores and scaled scores for family medicine candidates to determine their pass/fail status. Since different stations were presented to the two candidate cohorts, scores from one group had to be the basis for setting the cut-score. Since the cut-score was for the MCCQE Part II, the base form from the other specialty candidates was used for scaling.

Prior to 2013, each candidate was required to pass both by total score and by passing eight or more stations to pass the MCCQ Part II. Given the two test forms in this testing model, the requirement of passing eight stations was excluded. With different sets of station types (i.e., 10-minute and couplet), this requirement would have been problematic. The average modified borderline group cut-score across the 1000 replications was 59.43 for spring and 61.92 for fall.

The second standard setting method was the Hofstee procedure (Hofstee, 1983). Four questions were asked of a panel of experts: (1) What is the highest percent correct cut-score that would be acceptable, even if even candidate attains that score? (2) What is the lowest percent correct cut-score that would be acceptable, even if no candidate attains that score? (3) What is the maximum acceptable failure rate? (4) What is the minimum acceptable failure rate? For this study the cut-score was set with the total score distribution from the other specialty candidates and then applied to the family medicine scaled scores, as was done with the modified borderline group method. A medical expert panel familiar with the content and candidate groups provided the data for these four questions and the results of their judgments were used to create the
intersections with the cumulative total score distribution for the other specialty candidates, creating the cut-score for each replicate. The average Hofstee method cut-score across the 1000 replications was 59.82 for spring and 64.37 for fall.

Outcome Measures. There were three sets of statistical analyses conducted on the spring and fall for each standard setting outcome. The first measure was percentage pass rates as calculated for each replication, candidate group (other specialty and family medicine) and standard setting procedure. The pass rates were the percentage of candidates at or above the cut-score for each condition. The second measure was decision consistency, false positive and false negative rates as calculated for each replication and condition. More specifically, decision consistency is a statistical estimate of the agreement between the classifications based on two non-overlapping, equally difficult forms of the test (Livingston & Lewis, 1995). The third evaluation measure was decision accuracy, false positive and false negative rates as calculated for each replication and condition. More specifically, decision accuracy is a statistical estimate of the extent to which the actual classifications of candidates (on the basis of their single form score) agrees with the classifications that would be made on the basis of their true scores, if true scores could somehow be known (Livingston & Lewis, 1995). Both the decision consistency and accuracy estimates were based on the Livingston and Lewis procedure as estimated in the program BB-CLASS version 1.1 (Brennan, 2004).

Results

The results are organized by the different outcome measures. The pass rate results are presented first, followed by decision consistency and decision accuracy.
Pass rates. The pass rates are shown in Figure 3 across spring and fall for the two candidate groups (family medicine and other specialty) and standard setting procedures (modified borderline group and Hofstee).

For the other specialty candidates, the pass rates ranged from 75% to 89% across spring and fall. For this group, lower pass rates were found for the Hofstee method compared to the modified borderline group method with a larger difference found for fall (6.9%) as opposed to spring (1.3%). While some differences were found between the two methods for the fall examination, the pass rate for the Hofstee method was similar to the actual pass rates from 2009 (spring = 67% and fall = 83%; when the cut-score was conjunctive requiring eight stations to pass).

The pass rates for the family medicine candidates ranged from 97% to 99% across spring and fall. A slightly lower pass rate was found for the fall with the Hofstee method as compared to the borderline group method, however the resulting difference was very small (1.9%). For the family medicine candidate group, there were few differences regardless of standard setting method or which examination (i.e., spring or fall). And again, the Hofstee method produced similar pass rates to the pass rates from 2009 (spring = 93% and fall = 96%; when the cut-score was conjunctive with 8 stations passed).

Decision consistency.

Decision consistency is a statistical estimate of how consistently the candidates are being classified for a particular examination. Decision consistency greater than 0.8 is desired as this indicates at least 80% of the classification decisions (pass or fail) are correctly classified. Decision consistency can be affected by the number of candidates around the cut-score. The chances of making correct classification decisions increases if there are fewer candidates at or
around the cut-score, and conversely decreases if there are more candidates at or around the cut-score. Of the remaining 20% (or less), incorrect classifications are estimated to be in one of two categories, false positives and false negatives. False positive rates are estimates of the percentage of candidates that might be classified as “pass” that should have been classified as a “fail” based on the estimated true score. False negative rates are estimates of the percentage of candidates that might be classified as “fail” that should have been classified as a “pass” based on the estimated true score.

On a high-stakes examination where public safety is a concern, minimizing false positives as much as possible is important. The results of the decision consistency, false positive and false negative results, are shown in Table 2 for spring and fall for the two candidate groups and for both standard setting procedures.

The decision consistency rates for the other specialty candidates ranged from 0.84 to 0.91 across the spring and fall and both standard setting procedures. All of the decision consistency values were above 0.8 which indicates a high percentage of classifications were correct and that the cut-score could be applied fairly and consistently across different test forms. Decision consistency across standard setting procedures was very similar for the spring administration but differed slightly for the fall administration where slightly lower values were found for the Hofstee method. The false positive and false negative rates were generally even with false positive rates being 0.01 higher than false negative rates. In addition, the false positive and false negative values were higher for the Hofstee method as compared to the modified borderline group method.

The decision consistency rates for the family medicine candidates ranged from 0.95 to 0.98 across the spring and fall administrations and both standard setting procedures. All of the
decision consistency values were above 0.95 which indicates a very high percentage of classifications were correct and could be applied consistently across different examination forms. There were small to no differences found across the spring and fall administrations and across the modified borderline group and Hofstee standard setting methods. The false positive and negative rates were generally even with less than a 0.01 difference between false positive and false negative rates as found with the other specialty candidate results.

In summary, the decision consistency results were good to very good with both the modified borderline group and the Hofstee method across both candidate groups. The decision consistency results indicate that the new testing model should not have a negative impact on either the other specialty candidates or family medicine candidates.

Decision Accuracy

Decision accuracy is a statistical estimate of how accurately the candidates are being classified for a particular examination. Decision accuracy greater than 0.8 is desired as this indicates at least 80% of the classification decisions (pass or fail) are correctly being classified. Decision accuracy can be affected by the reliability of the examination scores and the number of candidates around the cut-score. For example, a low reliability estimate in concert with a higher number of candidates around the cut-score will decrease the decision accuracy estimate. Conversely, having a higher reliability estimate and a lower number of candidates around the cut-score can increase the decision accuracy estimate. Of the remaining 20% (or less), incorrect classifications are estimated to be in one of two categories, false positive and false negative rates. The results of the decision accuracy, false positive and false negative, are shown in Table 3 for spring and fall for the two candidate groups and for both standard setting procedures.
The decision accuracy rates for the other specialty candidates ranged from 0.75 to 0.89 across the spring and fall administrations and both standard setting procedures. The decision accuracy rates were above 0.8 for the fall administration and lower, at about 0.75, for the spring administration. Many of the other specialty candidates taking the spring administration are repeat test takers. Therefore, it is likely that there were more candidates around the cut-score in spring, thus lowering the decision accuracy rates. This result was also reflective of the lower decision consistency results for the other specialty candidates in the spring.

Decision accuracy across standard setting methods was similar for the spring administration but there were larger differences for the fall administration with lower values found for the Hofstee method. The false positive and false negative rates were not even, as was found with the decision consistency results. False positive rates were 0.00 for both administrations and standard setting procedures. However, false negative rates ranged from 0.11 to 0.25 across administrations and standard setting procedures.

The decision accuracy rates for the family medicine candidates ranged from 0.97 to 0.99 across the spring and fall administrations and both standard setting procedures. All of the decision consistency values were above 0.97 which indicates a very high percentage of classifications are correct and cut-scores could be applied accurately across different test forms. There were small to no differences found across the spring and fall administrations or across the modified borderline group and Hofstee methods. The false positive and false negative rates were not similar with false positive rates being 0.00 and false negative rates ranging between 0.01 and 0.03.

Generally the decision accuracy results were lower than the decision consistency results, especially for the spring examination. The results did not indicate any issues with using either
the modified borderline group or Hofstee method across both candidate groups. The decision accuracy results support the use of the new testing model and indicated that there should not be a negative impact on either the other specialty or family medicine candidates.

Discussion

The policy decision to implement a new testing model presented challenges, not least of which was being able to demonstrate that the proposed changes would not adversely affect candidates and to provide evidence of valid score interpretation. In this new model, family medicine candidates take one examination that would meet the criteria for the MCCQE Part II and allow candidates to receive their LMCC and support CFPC making pass-fail decisions on the clinical skills component of their certifying examination. Concurrently, other specialty candidates would take the MCCQE Part II to meet the criteria for their LMCC, with a somewhat different set of stations.

Evaluating the potential negative impacts or improvements to this testing model prior to implementation was critical. In this study two standard setting procedures used to set a common performance standard across two test forms (MCCQE Part II and CFPC CSE) were evaluated. Two different test forms were simulated to represent the new testing model of eight 10-minute stations and four *couplet* stations for the other specialty candidates and the same eight 10-minute stations and four *SOO stations* for the family medicine candidates. A bootstrap methodology was implemented to evaluate the two standard setting procedures to set a common performance standard so that the *same* valid and reliable classification decisions are made for both candidate groups. The bootstrap study results indicated that the pass rates, decision consistency and accuracy values are within acceptable ranges.
This study also provided an opportunity to assess how to implement scaling (Levine Observed Score) and indicated possible limitations to how the performance standards should be set. For example, because the candidates were not taking all of the same stations, the requirement of passing eight of twelve stations was judged as no longer feasible. To apply a common standard, a reference group (i.e., other specialty) was needed to calculate the total cut-score. This standard could then be applied to the family medicine candidates’ scaled scores. The need for the reference group was driven by how the modified borderline group method aggregates station cut-scores to calculate the total cut-score. However, with a standard setting method that determines the cut-score at the total score level using all candidates might be viable.

There were some limitations to this study that could be addressed in subsequent research studies. The data used to simulate the bootstrap samples had to be based on matched data between the MCCQE Part II and the CFPC SOO stations. In this case, going back to 2009 data was necessary to generate adequately large samples from which to randomly select for the replications. Since this data is four years from the 2013 implementation date, differences in cohort effects, content specifications, and in stations since 2009 may mean that base data may not accurately reflect 2013 data and the accuracy of the simulations will be less as a result. In addition, data had to be drawn from two examination administrations (fall and spring) in order to build a large enough sample. The difficulty was a result of drawing data for each family medicine candidate from two examinations so each candidate had to have passed the MCCQE Part II and at least attempted the CFPC certification examination to be included in the sample. Accurately matching the source data to the new model was important. If the source data is not reflective of future changes the results may not be useful with the bootstrap methodology.
However, the bootstrap result provided estimates of what might be found given the data limitations.

The bootstrap methodology was deemed to be useful in evaluating changing conditions in this context and this study demonstrates how this methodology can be used to evaluate any number of changing conditions to assist with assessing risk.
References

Table 1.

Descriptive Statistics for the Bootstrap Replications and Total Scores

<table>
<thead>
<tr>
<th>Specialty</th>
<th>Number of Replications</th>
<th>N per Replication</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Specialty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1000</td>
<td>750</td>
<td>64.16</td>
<td>7.56</td>
<td>38.94</td>
<td>82.44</td>
</tr>
<tr>
<td>Fall</td>
<td>1000</td>
<td>2300</td>
<td>69.90</td>
<td>7.12</td>
<td>39.65</td>
<td>88.44</td>
</tr>
<tr>
<td>Family Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1000</td>
<td>250</td>
<td>72.61</td>
<td>5.70</td>
<td>53.93</td>
<td>85.22</td>
</tr>
<tr>
<td>Fall</td>
<td>1000</td>
<td>700</td>
<td>73.60</td>
<td>4.90</td>
<td>57.15</td>
<td>87.38</td>
</tr>
</tbody>
</table>
Table 2.

Decision Consistency, False Positive and False Negative Rates by Candidate Group and Standard Setting Procedure

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DC</td>
<td>False Positive</td>
</tr>
<tr>
<td>Other specialty – MBG(^1)</td>
<td>0.84</td>
<td>0.08</td>
</tr>
<tr>
<td>Other specialty - Hofstee</td>
<td>0.84</td>
<td>0.09</td>
</tr>
<tr>
<td>Family Medicine –MBG(^1)</td>
<td>0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>Family Medicine -Hofstee</td>
<td>0.97</td>
<td>0.02</td>
</tr>
</tbody>
</table>

\(^1\) MBG – modified borderline group method

\(^2\) DC – Decision Consistency

Note. The values of decision consistency, false positive and false negative do not always equal 1.0 due to rounding.
Table 3.

Decision Accuracy, False Positive and False Negative Rates by Candidate Group and Standard Setting Procedure

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DA2</td>
<td>False Positive</td>
</tr>
<tr>
<td>Other Specialty – MBG1</td>
<td>0.76</td>
<td>0.00</td>
</tr>
<tr>
<td>Other Specialty - Hofstee</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>Family Medicine – MBG1</td>
<td>0.98</td>
<td>0.00</td>
</tr>
<tr>
<td>Family Medicine - Hofstee</td>
<td>0.98</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1 MBG – modified borderline group method

2 DA – Decision Accuracy

Note. The values of decision accuracy, false positive and false negative do not always equal 1.0 due to rounding.
Figure 1. Pathway to medical licensure and certification for family medicine candidates.
Figure 2. Spring 2013 pathway to medical licensing decision.
Figure 3. Pass rate for two candidate groups by standard setting procedure and administration.