The purpose of this study was to compare OSCE scores obtained by students assigned to either a control condition or 1 of 2 simulated security breaches.

In contrast, 2 studies where outright security breaches were modeled (i.e., the disclosure of OSCE materials) results clearly suggested that students who had prior access to test materials had a significant advantage over those in a control group (De Champlain et al. 1999; De Champlain et al. 2000).

For these analyses, we conducted 2 ANOVAs:

1. A one-way between subjects ANOVA for the total score effect
2. A repeated measures ANOVA for the subscore effect, where the subscores were the repeated measure

There was a main effect between the 3 study conditions, where the largest total score differences were found between the control and the security breach conditions.

The repeated measures effect was different based on the type of subscores, where the highest values were rating scale subscores, followed by the checklist and then oral questions subscores, with the exception of the oral questions for the security breach condition.

The results of this study indicate that cheating provides a significant advantage to those that engage in this behaviour.

To minimize the effects of breaches of test security might include:

- sequestering candidates
- minimizing station exposure
- ensuring large test banks
- emphasizing that sharing the topic of stations can inflate scores for subsequent test takers

EVIDENCE-BASED CHEATING: The impact of simulated security breaches on OSCE performance

background

The purpose of this study was to evaluate the impact of simulated security breaches on OSCE performance. The impact of test security breaches on OSCE performance was evaluated in previous research.

In contrast, 2 studies where outright security breaches were modeled (i.e., the disclosure of OSCE materials) results clearly suggested that students who had prior access to test materials had a significant advantage over those in a control group (De Champlain et al. 1999; De Champlain et al. 2000).

For these analyses, we conducted 2 ANOVAs:

1. A one-way between subjects ANOVA for the total score effect
2. A repeated measures ANOVA for the subscore effect, where the subscores were the repeated measure

There was a main effect between the 3 study conditions, where the largest total score differences were found between the control and the security breach conditions.

The repeated measures effect was different based on the type of subscores, where the highest values were rating scale subscores, followed by the checklist and then oral questions subscores, with the exception of the oral questions for the security breach condition.

The results of this study indicate that cheating provides a significant advantage to those that engage in this behaviour.

To minimize the effects of breaches of test security might include:

- sequestering candidates
- minimizing station exposure
- ensuring large test banks
- emphasizing that sharing the topic of stations can inflate scores for subsequent test takers

EVIDENCE-BASED CHEATING: The impact of simulated security breaches on OSCE performance

methods

Third year medical students who volunteered to participate in this study were randomly assigned to 1 of 3 test conditions:

1. Control (i.e., no information provided in advance)
2. Grapevine (i.e., list of station topics provided in advance)
3. Security Breach (i.e., scoring sheets, answers, content information provided in advance)

results

The purpose of this study was to compare OSCE scores obtained by students assigned to either a control condition or 1 of 2 simulated security breaches.

In contrast, 2 studies where outright security breaches were modeled (i.e., the disclosure of OSCE materials) results clearly suggested that students who had prior access to test materials had a significant advantage over those in a control group (De Champlain et al. 1999; De Champlain et al. 2000).

For these analyses, we conducted 2 ANOVAs:

1. A one-way between subjects ANOVA for the total score effect
2. A repeated measures ANOVA for the subscore effect, where the subscores were the repeated measure

There was a main effect between the 3 study conditions, where the largest total score differences were found between the control and the security breach conditions.

The repeated measures effect was different based on the type of subscores, where the highest values were rating scale subscores, followed by the checklist and then oral questions subscores, with the exception of the oral questions for the security breach condition.

The results of this study indicate that cheating provides a significant advantage to those that engage in this behaviour.

To minimize the effects of breaches of test security might include:

- sequestering candidates
- minimizing station exposure
- ensuring large test banks
- emphasizing that sharing the topic of stations can inflate scores for subsequent test takers

EVIDENCE-BASED CHEATING: The impact of simulated security breaches on OSCE performance

conclusion

There was a main effect between the 3 study conditions, where the largest total score differences were found between the control and the security breach conditions.

The repeated measures effect was different based on the type of subscores, where the highest values were rating scale subscores, followed by the checklist and then oral questions subscores, with the exception of the oral questions for the security breach condition.

The results of this study indicate that cheating provides a significant advantage to those that engage in this behaviour.

To minimize the effects of breaches of test security might include:

- sequestering candidates
- minimizing station exposure
- ensuring large test banks
- emphasizing that sharing the topic of stations can inflate scores for subsequent test takers

EVIDENCE-BASED CHEATING: The impact of simulated security breaches on OSCE performance

references


Average of Examiner A and B scores

<table>
<thead>
<tr>
<th>Condition</th>
<th>Checklist</th>
<th>Rating Scales</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.9</td>
<td>80.0</td>
<td>144.9</td>
</tr>
<tr>
<td>Grapevine Condition</td>
<td>64.3</td>
<td>77.6</td>
<td>141.9</td>
</tr>
<tr>
<td>Security Breach</td>
<td>60.3</td>
<td>73.6</td>
<td>133.9</td>
</tr>
</tbody>
</table>

Mean scores for the 3 study conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Checklist</th>
<th>Rating Scales</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.9</td>
<td>80.0</td>
<td>144.9</td>
</tr>
<tr>
<td>Grapevine Condition</td>
<td>64.3</td>
<td>77.6</td>
<td>141.9</td>
</tr>
<tr>
<td>Security Breach</td>
<td>60.3</td>
<td>73.6</td>
<td>133.9</td>
</tr>
</tbody>
</table>

The repeated measures effect was different based on the type of subscores, where the highest values were rating scale subscores, followed by the checklist and then oral questions subscores, with the exception of the oral questions for the security breach condition.

The results of this study indicate that cheating provides a significant advantage to those that engage in this behaviour.

To minimize the effects of breaches of test security might include:

- sequestering candidates
- minimizing station exposure
- ensuring large test banks
- emphasizing that sharing the topic of stations can inflate scores for subsequent test takers

EVIDENCE-BASED CHEATING: The impact of simulated security breaches on OSCE performance

<table>
<thead>
<tr>
<th>Condition</th>
<th>Checklist</th>
<th>Rating Scales</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.9</td>
<td>80.0</td>
<td>144.9</td>
</tr>
<tr>
<td>Grapevine Condition</td>
<td>64.3</td>
<td>77.6</td>
<td>141.9</td>
</tr>
<tr>
<td>Security Breach</td>
<td>60.3</td>
<td>73.6</td>
<td>133.9</td>
</tr>
</tbody>
</table>

Mean scores for the 3 study conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Checklist</th>
<th>Rating Scales</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.9</td>
<td>80.0</td>
<td>144.9</td>
</tr>
<tr>
<td>Grapevine Condition</td>
<td>64.3</td>
<td>77.6</td>
<td>141.9</td>
</tr>
<tr>
<td>Security Breach</td>
<td>60.3</td>
<td>73.6</td>
<td>133.9</td>
</tr>
</tbody>
</table>

The repeated measures effect was different based on the type of subscores, where the highest values were rating scale subscores, followed by the checklist and then oral questions subscores, with the exception of the oral questions for the security breach condition.

The results of this study indicate that cheating provides a significant advantage to those that engage in this behaviour.

To minimize the effects of breaches of test security might include:

- sequestering candidates
- minimizing station exposure
- ensuring large test banks
- emphasizing that sharing the topic of stations can inflate scores for subsequent test takers

EVIDENCE-BASED CHEATING: The impact of simulated security breaches on OSCE performance

<table>
<thead>
<tr>
<th>Condition</th>
<th>Checklist</th>
<th>Rating Scales</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>64.9</td>
<td>80.0</td>
<td>144.9</td>
</tr>
<tr>
<td>Grapevine Condition</td>
<td>64.3</td>
<td>77.6</td>
<td>141.9</td>
</tr>
<tr>
<td>Security Breach</td>
<td>60.3</td>
<td>73.6</td>
<td>133.9</td>
</tr>
</tbody>
</table>